90. A (1,5)-Vinyl Shift

by **Georg Frater*** and **Urs** Miiller

Giouudun Research Company Ltd., ijberlandstrasse 138, CH-8600 Dubendorf

(5. IV.88)

The structure of the by-product of the pyrolysis of **1** has been proved to be **3.** It is proposed that a (1,5) shift of an (alkoxycarbonyl)vinyl group $(8 \rightleftarrows 10)$ is the key step in the formation of 3.

Introduction. - Earlier, we described the synthesis of ethyl dehydro-bicyclofarnesoate **2** by pyrolysis of the trienecarboxylate **1** [l]. Later, we found that the corresponding alcohol of **2,** upon treatment with acid, unexpectedly furnished herbertene [2]. In the course of our work on this latter rearrangement, we took the opportunity to eliminate an old obligation, namely elucidate the structure of a sizable by-product of the pyrolysis of **1.** Heating of **1** at 240" gave rise to **2** and this by-product in a ratio of 3 : 1 in an otherwise quite clean reaction in 70% yield $[1]$. In this paper, we describe formation and structure of this by-product.

Results. - The by-product was best isolated by controlled hydrolysis of the reaction mixture with KOH in MeOH at 50". Under these conditions, the by-product is selectively hydrolysed to the acid, whereas the main product **2** is not. NMR experiments, conducted with the re-esterified product, established the structure of the by-product as **3** (see *Exper.* Part).

Especially helpful for the structure elucidation were beside the 2D-'H,'H-correlation (COSY), the 2D-13C,'H-correlation, and the 2D inadequate-experiment, the differential NOE experiments, which showed effects of $10-15\%$ between CH₃-C(8)/H-C(1), $H-C(2)/CH_3-C(3)$, and $CH_3-C(3)/H-C(4)$. The *trans*-configuration followed from the small ¹H,¹H-coupling constant $J(1,2) = 2$ Hz and the even smaller, *i.e.* not observed, *J(2,4)* which suggested H-C(2) to be in pseudoequatorial position *(cf.* **2** and *epi-2* in [l]).

Reduction of **3** with LiAIH, furnished the primary alcohol **4** which, upon treatment with acid (HCOOH, cat. HClO,), afforded the hydrocarbon *5* (40%). An isomeric tetraline derivative was at our disposal from the acid-catalysed rearrangement of *6,* the hydride-reduction product of *epi-2* [I], and was identified as **7').** The comparison of the

¹) Note the different behaviour of the epimeric alcohol corresponding to **2** with a pseudoaxial CH₂OH group, which furnished herbertene as the main product [2].

hydrocarbons was very valuable for the structure elucidation of **3,** as the position of the Me groups of both compounds was established by differential NOE experiments (see Exper. Part).

Discussion. – In our first communication [1], we proposed a reversible [1,5]-H shift, **1** \rightleftarrows **8**, to explain the *trans* \rightleftarrows *cis* isomerisation of **1**, which is a prerequisite for the observed disrotatory electrocyclisation to **2** *(Scheme* I). In **8,** [1,5]-H shifts lead either to **1** or to $(2E/Z)$ -9. The isomer $(2E)$ -9 is ideally disposed for an electrocyclisation to 2, whereas $(2Z)$ -9 is not, and the latter isomerises to $(2E)$ -9 through reversible [1,7]-H shifts [1].

Now, we propose that in **8** a (1,5) shift of the (alkoxycarbony1)vinyl group to **10** takes place in such a way that it can compete with the [1,5]-H shifts $(1 \rightleftharpoons 8 \rightleftharpoons 9)$.

The AH^* of the [1,5]-H shift in our system is probably around 35 kcal/mol (for analogy, see $[3]$). On the other hand, very efficient $(1,5)$ -vinyl migrations have already been reported [4–9] with ΔH^+ ca. 21–26 kcal/mol. However, all these examples demonstrate rearrangements in bicyclic systems. In contrast to these reactions, our rearrangement takes place in a noncyclic system (concerning the π system), and the migrating vinyl moiety carries an additional alkoxycarbonyl group. The further fate of **10** is supposed to be very similar to that of **8**. A reversible [1,5]-H shift leads to the $(2E/Z,4E/Z,2'Z)$ -trienecarboxylate 11, from which only the $(2E, 4Z, 2'Z)$ -isomer cyclises to 3 (see the case of $1\rightarrow 2$ in [1]). The $(2Z,4E,2'Z)$ -isomer is again supposed to isomerise to the $(2E)$ -isomer through reversible [1,7]-H shifts, whereas the (4E)-isomers reversibly yield **10** again by [1,5]-H shifts.

An alternative mechanism for the formation of **3** can be formulated by three consecutive (13) migrations *(Scheme 2).* First, a (1,5) migration of the alkoxycarbonyl group, $2 \rightarrow a$, followed by a (1,5)-CH₃ shift $a \rightarrow b$, and finally a $(1,5)$ shift of the alkoxycarbonyl group $\mathbf{b} \rightarrow 3$. Both kinds of $(1,5)$ shifts are well documented [3]. Such mechanism, however, could easily **be** excluded: heating **of 2** at **260"** for up to 45 h did not yield **3,** [l], whereas **3** was stable at this temperature. Furthermore, we pyrolyzed doubly labelled [1 **,2-3C2]-12)** to a mixture **of** labelled **2** and **3.**

²) The synthesis will be published later.

In the ¹³C-NMR of the corresponding alcohols *epi*-6 and 4, one could observe a vicinal $J(^{13}C, ^{13}C)$ of 35 Hz (from labelled **4,** 61.5 ppm *(t)* and 50.3 *(d)).* This means that in the course of the formation of 3 from **1,** C(1) and C(2) remain directly bonded.

Concerning the mechanism of the observed $(1,5)$ shift of a (alkoxycarbonyl)vinyl group, different possibilities can be discussed. According to *Alder* and *Grimme's* observations *(cf* [9] and lit. cit. therein), a biradical intermediate of type **c** (or a corresponding transition state with biradical character) may be formulated³).

We thank Dr. *E. Billeter,* Mrs. *R. Blauer,* Mr. *J. Miirki,* and Dr. *J. Schmid* for NMR and MS measurements, Dr. *Hriunac* for his help in some GLC analysis, and Dr. *J. Zsindely* for helpful discussions.

Experimental Part

General. See [10]. Differential NOE: irradiated proton→affected proton (%).

Ethyl trans-1.2,5.6,7,8-Hexahydro-l.3,8.8-tetramethyl-2-naphthoate (3). A mixture of 1 (388 g) in N,N-diethylaniline (1.6 l) was refluxed at 220° during 70 h (conversion to $2/3$ *ca.* 92% ⁴)). After workup (hexane, $2M$ H₂SO₄, drying over MgS04), the crude product was hydrolysed in CH30H (1 **1)** with KOH (100 g) at reflux until all 3 disappeared (GLC, 1.5 h). Workup for the acids yielded 71 g of a mixture of carboxylic acids, which were esterified in hexamethylphosphoric triamide (HMPA)/H₂O 9:1 in the presence of KOH and EtI furnishing 3/(2E/Z)-1 *ca.* 4:1, besides **4** small impurities. This mixture was carefully distilled on a column: 35 g of 3 at 112-1 14"/0.75 Torr ($> 95\%$) and 16 g of 3 at 114-115°/0.75 Torr contaminated with 15% of 1. The residue (8.5 g) contained mainly 1,

³) An ionic analogue of **c** could also be formulated. An intramolecular *Diels-Alder* addition of **8** to yield **d** with subsequent opening of the cyclobutane ring at c,c', possibly *via c,* would also be in agreement with the observed vinyl shift.

Later we found that refluxing at 273[°] in tetraethylenglycol dimethyl ether is much more advantageous $(t_{\gamma_2}$ only 25-30 min; workup with H_2O/h exane). *4,*

the 4 smaller impurities, and ca. 15% of 3. 3: IR (film): 1730. UV (EtOH): 265 (5.25·10³). ¹H-NMR: 5.62–5.59 (m, H-C(4)); 4.15-4.0 (m, CH₃CH₂O); 2.79-2.71 (m, H-C(1)); 2.57-2.55 (d, $J \approx 2$, H-C(2)); 2.1-1.95 (m, 2 H-C(5)); 1.86–1.84 (d, $J \approx 2$, CH₃–C(3)); 1.62–1.53 (m, 2 H–C(6)); 1.48–1.41 (m, 2 H–C(7)); 1.23 (t, CH₃CH₂O); 1.06, 0.97 $(2s, 2CH_1-C(8))$; 1.02 (d, CH₃-C(1)). ¹³C-NMR: 172.4 (s); 137.9 (s); 127.5 (s); 125.5 (s, and d); 60.0 (t); 52.8 (d); 39.9 (t); 33.8 (s); 31.2 (d); 29.25 (t); 29.1 (q); 27.8 (q); 23.2 (q); 19.5 (t and q); 14.3 (q). Differential NOE: 2 CH₃-C(8) \rightarrow H-C(1)(11); CH₃-C(3) \rightarrow H-C(2)(10) and H-C(4)(15). MS: 262(22, M⁺), 247(31), 189(18), 173 (34) , 159 (23), 147 (11), 133 (17), 119 (100), 105 (16).

trans-1,2,5,6,7,8-Hexahydro-1,3,8,8-tetramethyl-2-naphthalenemethanol(4). At r.t., 3(1.5 g, 5.7 mmol) in THF (30 ml) was reduced with LiAlH₄ (0.5 g). Normal workup yielded 1.2 g of an oil. B.p. $100-110^{\circ}/0.05$ Torr (bulb-to-bulb dist.). H-NMR: 5.48–5.45 (m, H-C(4)); 3.51 (dd, $J \approx 10, 5, 1$ H, CH₂OH); 3.33 (dd, $J \approx 10, 10, 1$ H CH₂OH); 2.41-2.35 (br. q, H-C(1)); 2.06-1.83 (m); 1.77 (d, $J \approx 2$, CH₃-C(3)); 1.66-1.39 (m, 5 H); 1.06, 1.02 (2s, $2 \text{CH}_3\text{--C}(8)$; 0.99 (d, CH₃-C(1)). ¹³C-NMR: 137.1 (s); 131.1 (s); 124.6 (s); 124.4 (d); 61.5 (t); 50.3 (d); 39.9 (t); 33.8 (s); 29.22 (t); 29.15 (a); 29.05 (d); 27.8 (a); 22.6 (a); 19.5 (t); 19.1 (a). MS; 220 (11, M^+), 205 (15), 189 (11), 175 (4), 145 (6), 133 (11), 119 (100), 105 (25), 91 (10).

1,2,3,4-Tetrahydro-1,1,6,7,8-pentamethylnaphthalene (5). For 30 min, 4 (1.1 g, 5 mmol) was refluxed in HCOOH (20 ml) containing 70% HClO₄ soln. (0.2 ml). Short chromatography on silica gel with hexane and distillation furnished 370 mg (37%) of 5. ¹H-NMR: 6.77 (s, H-C(5)); 2.77-2.71 (m, 2 H-C(4)); 2.38 (s, CH₃-C(8)); 2.22 (s, CH₃-C(6)); 2.13 (s, CH₃-C(7)); 1.76-1.62 (m, CH₂(2), CH₂(3)); 1.42 (s, 2 CH₃-C(1)). ¹³C-NMR: 141.0 (s); 135.4 (s); 134.07 (s); 134.05 (s); 133.2 (s); 129.1 (d); 45.0 (t); 34.5 (s); 32.3 (t); 29.85 (2q); 20.5 (q); 19.6 (t); 19.4 (q); 16.0 (q). Differential NOE: $2 \text{ CH}_3-C(1) \rightarrow CH_3-C(8)$ (8); $\text{CH}_3-C(8) \rightarrow CH_3-C(1)$ (6) and CH₃-C(7) (9); CH₃-C(7) \rightarrow CH₃-C(6) (12); CH₃-C(6) \rightarrow H-C(5) (13). MS: 202 (17, M⁺⁺), 187 (100), 172 $(17), 159(9).$

 $cis-1, 5, 6, 7, 8, 8a-Hexahydro-2, 5, 5, 8a-tetramethyl-1-naphthalenemethanol$ (6). At 40-50°, epi-2 [1] (1.25 g, 5 mmol) in THF (30 ml) was reduced with LiAlH₄ (0.3 g) for 4 h. Usual workup yielded 1.1 g (ca. 100%) of an oil. B.p. 125-130°/0.1 Torr. IR (film): 3350. ¹H-NMR: 5.82 (d, $J \approx 6$, H-C(4)); 5.76-5.72 (m, H-C(3)); 3.98-3.84 (AB of ABX, CH₂O); 2.16-2.11 (m, H-C(1)); 1.98-1.96 (m, CH₃-C(2)); 2.02-1.95 (m, 1 H); 1.75-1.54 (m, 2 H); $1.48-1.26$ (m, 4 H). MS: 220 (8, M⁺⁺), 189 (3), 159 (6), 133 (11), 119 (100), 105 (24), 91 (10), 57 (40), 41 (62).

 $1,2,3,4$ -Tetrahydro-1,1,5,6,7-pentamethylnaphthalene (7). For 30 min, 6 (250 mg, 1.15 mmol) was refluxed in HCOOH (10 ml) containing 0.1 ml of 70% HClO₄ soln. After usual workup, 120 mg (50%) of 90% pure 7 were distilled at 80°/0.05 Torr. ¹H-NMR: 7.03 (s, H-C(8)); 2.65–2.60 (m, 2 H-C(4)); 2.27 (s, CH₃–C(7)); 2.17 (s, $CH_1-C(6)$; 2.14 (s, CH₃-C(5)); 1.86-1.78 (m, 2 H-C(3)); 1.63-1.58 (m, 2 H-C(2)); 1.28 (s, 2 CH₃-C(1)). ¹³C-NMR: 142.6 (s); 134.1 (s); 133.2 (s); 131.8 (s); 131.7 (s); 125.4 (d); 38.8 (t); 33.7 (s); 31.9 (2q); 28.5 (t); 20.9 (q); 19.8 (t); 15.7 (q); 15.5 (t). Differential NOE: 2 CH₃-C(1) \rightarrow H-C(8) (28); H-C(7) \rightarrow H-C(8) (9.5); CH₃-C(5)->2 H-C(4) (3.5). MS: 202 (19, M⁺⁺), 187 (100), 172 (15), 157 (12).

REFERENCES

- [1] G. Frater, Helv. Chim. Acta 1974, 57, 2446.
- [2] G. Frater, J. Chem. Soc., Chem. Commun. 1982, 521.
- [3] Review in [1,5]-shift reactions: V.A. Mironow, A.D. Fedorovich, A.A. Akkrem, Russ. Chem. Rev. 1981, 50, 666.
- [4] L.A. Paquette, J.J. Carmody, J. Am. Chem. Soc. 1975, 97, 5841.
- [5] M.F. Semmelhack, H.N. Weller, J.S. Foss, J. Am. Chem. Soc. 1977, 99, 292.
- [6] M. F. Semmelhack, H. N. Weller, J. Clardy, J. Org. Chem. 1978, 43, 3791.
- [7] J. Frank, W. Grimme, J. Lex, Angew. Chem. 1978, 90, 1002.
- [8] T. Sato, S. Itô, Tetrahedron Lett. 1979, 1051.
- [9] R.W. Alder, W. Grimme, Tetrahedron 1981, 37, 1809.
- [10] C. Nussbaumer, G. Fráter, Helv. Chim. Acta 1987, 70, 396.